
GitStake: A GitHub DApp with PoS based Open-
Source Contributions, Incentivization using ERC20

tokens (GitStakeTokens – GST)

Aditi Narkar
1

, Tufayl Dalvi
1

, Aarya Paradkar
1

, Manas Mishra
1

, Harsh Poojary
1

, Pa-
ras Mathpati

1

 and Preeti Patil
2

1
UG Scholar, Terna Engineering College, Nerul Navi Mumbai, Maharashtra 400706, India

2
Assistant Professor, Terna Engineering College, Nerul Navi Mumbai, Maharashtra

400706, India

Abstract. This paper addresses a decentralized platform designed to
revolutionize open-source contributions by leveraging ERC20 tokens,
Decentralized Finance (DeFi), and a Proof-of-Stake (PoS) mechanism for
pull request management. The platform allows contributors to stake tokens
on issues, with issue creators setting prizes for successful resolutions. The
PoS mechanism prioritizes pull requests based on stake amounts, ensuring
critical contributions receive the necessary focus. GitStake integrates DeFi
to create a transparent, trustless incentivization system, promoting a fair and
efficient reward distribution model for open-source development. GitStake
also features an initial token distribution model, where contributors receive
free tokens initially, followed by an ICO system for further token
generation and user engagement. This approach fosters global,
decentralized collaboration while ensuring the sustainability and growth of
open-source projects.

Keywords: Blockchain, open-source contributions, staking mechanism,
ERC20 tokens, GitHub API integration, DeFi, supply-demand dynamic.

1 Introduction

Open-source software development has enabled global collaboration and
innovation, but traditional models often fail to sufficiently incentivize developers.
This leads to challenges in sustaining engagement, maintaining quality, and
ensuring fair compensation [1,3,4]. While platforms like GitHub provide
collaboration tools, they lack decentralized reward systems that motivate
contributors and ensure transparent compensation [2,5].

This research proposes GitStake, a decentralized platform designed to enhance the
open-source contribution ecosystem by leveraging blockchain technologies, DeFi,

and a PoS mechanism [4,6,7]. GitStake incentivizes contributors by allowing them
to stake ERC20 tokens on open issues within repositories, with issue creators
setting bounties or prizes for resolving them [1,2]. Unlike traditional methods, this
decentralized approach ensures that contributors are financially rewarded based on
their staked amount, efforts and the importance of their contributions [3,5]. The
platform's PoS system prioritizes pull requests by staking amounts, ensuring that
high-value contributions are addressed more promptly [5].

GitStake also features an initial distribution of free tokens, followed by an ICO for
further token generation, fostering long-term participation and growth. Integration
with the GitHub API enables seamless interaction with existing repositories,
allowing contributors to continue using familiar tools [7]. By decentralizing and
incentivizing contributions, GitStake addresses key challenges in open-source
development, providing a transparent and sustainable model for reward
distribution [8].

2 System Flow

Fig. 1. ERC20 Token – GitStakeToken (GST) Contract and GithubStaking

 Contract Deployment

Fig. 2. GitHub User and Wallet (e.g., Meta mask) Initialization

Fig. 3. Issue Creation on a Repository

Deployer Wallet GST with Initial Supply GithubStaking Contract

Wallet Address and
GitHub Token LOGIN User

Initialization

Contract
Wallet

Creation
Request GST

Approve
Contract of
using GST

Fig. 4. Staking on Issue

Fig. 5. Selecting a Solver on Issue

3 Contract Implementation

GitStakeToken contract is an ERC20 token which has name ‘GitStakeToken’ and
symbol ‘GST’. It is deployed by owner with initial supply as shown in Fig. 3.

The GitHubStaking contract is designed to incentivize open-source contributions
by allowing users to create issues on GitHub repositories, stake tokens on these is-
sues, and reward solvers who successfully address them as shown in Fig 3, 4 and
5. Its key functionalities include:

3.1 Core Components:

• Stake: Represents a stake made by a user (staker) on a GitHub pull
request (pullReqId), with an associated amount (amt).

• Issue: Represents a GitHub issue, with fields for the creator's wallet
address (address), prize amount (amt), status (solved), address
(solver), total stakers on the issue (stakeCount), total staked GST
on the issue (totalStakeAmt) and a mapping of stakes (stakes).

• Repo: Contains a mapping of issue IDs to `Issue` structs, representing
a GitHub repository with multiple issues and issueCount.

Selected RepoId
and IssueId

Create Fork
(API)

Forked Repository

Create Branch
(API)

Contribute

Create Pull
Request

(API)
Pull Request Id

Staked GST
Amount gets

locked

Tx Hash for Stake
Creation

Retrieve RepoId,
IssueId, PullReqId,

StakedAmount

Map with GitHub
API fetched data

(API)

Highest Stake First
Order of Stakes

(PoS mechanism)

Selected Solver and
Wallet Address

Solver gets Staked
GST + Prize GST

DEDUCTION_AMT
based on total

stakes and total
stake amount on

the issue

Losers get refund
of stakedAmt -

DEDUCTION_AMT
Close Issue (API)

• WalletStats: Stores statistics related to a user’s staking performance, such
as lostStakeCount, wonStakeCount, totalAmtStaked ,
openAmtStaked, totalStakes, openStakes,
rewardsEarned, lost_refund and
withdraw_proceedings.

• IssueStats: Tracks statistics for issues created by the user, including
totalPriceAmt_SetByMe, openPriceAmt_SetByMe,
totalIssues_SetByMe and openIssues_SetByMe.

3.2 Current Price of GST:

The price of the token dynamically increases based on the number of tokens that
have already been sold.

eq.1. CurrentPrice = RATE + k ×(SOLD_TOKENS) ^2

• RATE: In eq. 1, RATE represents the base price of the token. It is a
constant or predefined value set in the contract, which forms the initial
price when no tokens have been sold.

• k: This is a constant multiplier that determines how quickly the price
increases as more tokens are sold in eq. 1. It's part of the price adjustment
mechanism.

• SOLD_TOKENS: This variable keeps track of the total number of tokens
sold. As more tokens are sold, this value increases, and the price of future
tokens goes up accordingly.

• In eq. 1, the quadratic term SOLD_TOKENS^2 means that the price
grows more rapidly as more tokens are sold. It provides a supply-demand
dynamic where earlier buyers get a lower price, and later buyers pay
more as shown in Fig. 6.

Fig. 6. Dynamic Token Rate Based on SOLD_TOKENS (Bonding Curve Model)

3.3 Free Token Request

During the initial token distribution phase (airdropping), users are allowed to re-
quest a set number of free tokens to encourage participation and provide an incen-
tive to early adopters. The function ensures that the total number of free tokens
distributed remains within the pre-defined limit. Once the distribution phase ends,
users can no longer request free tokens and must purchase them through the ICO.

3.4 Buy / Request Token

It implements Initial Coin Offering (ICO) mechanism. The number of tokens a us-
er receives is determined by the current token price (from getCur-
rentPrice()) and the amount of Ether they send. It dynamically adjusts the
token price based on the number of tokens sold and ensures that each user receives
the correct number of tokens based on the amount of ETH they send as shown in
Fig 6. The quadratic price function incentivizes early participation.

eq.2. tokenAmount = ethAmt / tokenPrice

The eq. 2 calculates the number of tokens (tokenAmount) the user will receive
by dividing the ETH they sent (ethAmt) by the current price of the token (to-
kenPrice).

SOLD_TOKENS: This variable is incremented by tokenAmount just sold.
TOTAL_RAISED: This variable is incremented by the amount of ETH sent by
the user (ethAmt), tracking the total amount of ETH the contract has raised
through token sales.

3.5 Selling Tokens:

The selling price of tokens is based on the current price of the tokens, which is
dynamically adjusted, similar to the token purchase process as shown in Fig. 6.
The logic for liquidating tokens must ensure that users can only sell tokens they
have purchased and not the free tokens they initially received. To prevent abuse,
free tokens (distributed during initial promotions or airdrops) are marked as non-
transferable or non-sellable. This ensures users can't immediately sell free tokens
to drain the contract’s liquidity.

Calculate Sell Amount: The user specifies the number of tokens they want to sell.
The smart contract calculates the total amount of ETH they will receive based on
the current token price as in eq.3.

eq.3. ethAmount = tokenAmount × tokenPrice

3.6 Liquidity Risk Management:

To prevent liquidity issues (where the contract runs out of ETH to pay sellers),
several mechanisms can be introduced:

1. Sell Limits: Limit the number of tokens that can be sold in a given time.
2. Dynamic Price Adjustment: If liquidity is low, adjust the token sell price

to discourage mass liquidation.
3. Reserve Fund: Set aside a portion of ETH raised during the ICO for

liquidity purposes to ensure there is always enough ETH for token
holders to liquidate.

3.7 Issue Creation

Users can create issues by calling the `createIssue` function. They specify a
repository ID, an issue ID, and the prize (in ERC20 tokens) as shown in Fig. 3.
If these checks pass, the user transfers the prize tokens to the contract. The issue is
then created with the user's address as the creator, the prize amount is stored, and
an event `IssueCreated` is emitted.

3.8 Staking on Issues

They specify the repository ID, issue ID, pull request ID, and the staking amount
(`amt`) as shown in Fig 4. This amount gets locked till issue is solved or a certain
max_period [7]. Optionally the contract can also give small time-dependent re-
turns on their locked staked amount for more user engagement and participation.
The function checks a major condition:

• If staker has occurred losses (withdraw_proceedings < 0), then value
of (balance-withdraw_proceedings) of the staker should be
greater than 30% of (balance–amt). Else the staker will have to buy
more ERC20 tokens (GST) in order to maintain balance.

An event `StakePlaced` is emitted. The contract also updates the user's wallet
statistics, including total stakes and open stakes.

3.9 Marking an Issue as Solved

The markSolved function allows the creator of an issue to mark it as solved
when a solver’s pull request is accepted by creator as shown in Fig 5. This func-
tion finalizes the issue resolution process by rewarding the solver and rejecting all
other non-winning stakers.

If there are multiple stakers, the rejectOthers function is called to refund
non-winning stakers with a deduction.

3.10 Deduction Rate

The getDeductionRate function calculates the rate at which non-winning
stakers are penalized. When there are multiple stakers, and only one wins, others
face a deduction to ensure fairness in the staking process. It is dependent on:
total: The total amount staked by all participants in the issue.
amt: The amount staked by an individual staker.
count: The total number of stakers.

The function first calculates a deduction rate (rate) using two parts:
1. A portion of the individual's staked amount, scaled by a constant
DEDUCTION_FACTOR (set to 0.5 ether).
2. The remainder of the total staked amount, divided evenly among all stakers.
This ensures that the deduction is proportional to both the individual's stake and
the total stake pool.
This function determines how much will be deducted from non-winning stakers.
By applying a deduction rate that factors in both the individual’s stake and the to-
tal stake, the system maintains a balance between encouraging participation and
penalizing non-selection, preventing unfair losses.

3.11 Handling Multiple Stakers

The rejectOthers function handles the rejection of stakers who did not win
the solution for an issue. After a solver is selected, this function ensures that other
stakers are refunded a portion of their stakes, with a deduction applied for not
winning as shown in Fig 5.
• Calculate Deduction: For each non-winning staker, the function calculates the
deduction using the getDeductionRate function. This deduction is applied
based on the total staked amount and the number of stakers.
• Calculate Refund: The refund is determined by subtracting the deduction from
the original staked amount. The refund represents the amount returned to the stak-
er after the deduction.
• Record Total Deductions: The total deductions from all non-winning stakers are
added to the system’s global deductions counter.

4 Discussion

4.1 Contribution to DeFi ecosystem

The GitStake platform leverages DeFi concepts to ensure trustless interactions be-
tween contributors and project maintainers. Existing research indicates that inte-
grating DeFi into development ecosystems enhances transparency and reduces re-
liance on centralized entities [4, 5].

• Dynamic Token Pricing: The quadratic token pricing mechanism aligns
with bonding curve models discussed by Kumar et al. [6], ensuring fair
token distribution while incentivizing early adopters and maintaining
liquidity.

• Free Token Distribution: Prior work on token distribution models
emphasizes the importance of accessibility to encourage initial
participation. GitStake's airdrop feature mirrors the strategies outlined by
Zhang and Li [7], driving user engagement during the platform's early
stages.

4.2 Resolving Key Open-Source Challenges

GitStake addresses several limitations of traditional contribution models:
• Prioritization of Critical Issues: By integrating staking, GitStake ensures

that issues with higher stakes receive immediate attention, as highlighted
by Johnson and Ray's research on resource allocation in collaborative
environments [8].

• Reward Transparency: Decentralized reward systems, such as those
implemented in GitStake, reduce trust deficits identified in traditional
platforms [9]. This aligns with studies by Patel et al. [10], which underscore
the importance of trust in sustaining open-source contributions.

• Handling Financial Risks: Token volatility, a common concern in
blockchain ecosystems, is mitigated through mechanisms like deduction
rates and liquidity risk management. These strategies echo the findings of
Wang et al. [11], who proposed adaptive pricing to address market
dynamics.

5 Sample Screen Designs

Fig. 7. Wallet (via Connect button) and User Login (via GitHub Access Token)

Fig. 8. List of Issues under a Repository including Win Prize, Creator, Staker Count, Total

Staked Amount and Option to Close for each and Highest Win Prize among the issues.
There is also a Fork Button to fork the repository with desired name.

Fig. 9. Details of an Issue, Linked Pull Requests indicates Stakes

Fig. 10. Non-Deployer Wallet Stats which includes core components and user’s reposito-

ries and other core functions.

6 Limitations

6.1 Token Volatility and Financial Risk

One of the core challenges in a tokenized ecosystem like GitStake is the volatility
of ERC20 tokens. Fluctuations in token value may deter contributors, especially
those relying on the platform for consistent rewards. The risk of financial loss due
to sudden drops in token value could lead to decreased participation, particularly
for contributors from regions with weaker financial safety nets.

6.2 Centralization Risk in Early Stages

During the initial token distribution and ICO phase, there is a risk of centraliza-
tion, where a few participants with significant financial resources may acquire
large amounts of tokens. This could allow them to dominate the staking process,
skewing the reward distribution in favor of a few rather than promoting fair and
equal participation.

6.3 Ethical Concerns Regarding Wealth Disparity

The platform’s PoS mechanism prioritizes contributions based on the amount

staked. While this incentivizes high-value contributors, it may unintentionally cre-
ate a wealth disparity, where only those who can afford to stake large amounts of
tokens gain visibility and priority. This could marginalize smaller contributors or
developers from less affluent backgrounds, raising ethical concerns about equity
and access.

6.4 Exploitation of Free Tokens

The initial distribution of free tokens may encourage speculative behaviour, where
contributors stake tokens not out of a genuine interest in the project but to exploit
the rewards system. Without proper monitoring, this could lead to an environment
where token holders’ game the system for financial gain without contributing
meaningful work.

6.5 Fraudulent Contributions

There is a risk of developers raising false issues or submitting plagiarized or low-
quality code to exploit the reward system. Detecting and preventing such behav-
iour would require robust verification mechanisms.

7 Future Scope

7.1 Leveraged Staking with Aave or Similar Protocols

By integrating with protocols like Aave, GitStake could allow contributors to lend
and borrow additional tokens against their staked assets. This would enable
contributors to increase their staking power, effectively leveraging their
contributions. Leveraged staking could make the platform more attractive to
developers seeking higher rewards while maintaining careful risk management.

7.2 Yield Farming on Locked Stakes

GitStake could introduce a low-yield farming mechanism where staked tokens
earn small but steady returns while being locked [7]. This would incentivize long-
term staking by offering contributors additional rewards over extended periods,
providing passive income even before resolving issues.

7.3 Dynamic Reward Adjustment Based on Market Conditions

The reward rates on staked amounts could be dynamically adjusted based on fac-
tors like token demand, liquidity, or network activity, ensuring the platform re-
mains sustainable and competitive in the DeFi space. This dynamic system
could balance the incentives between early adopters and new contributors.

References

1. Adams, H. et al.: Uniswap v2 core. Uniswap.org (2021)
(https://uniswap.org/whitepaper.pdf)

2. Karp, A., Melbardis, I.: Nexus Mutual: A decentralized insurance protocol. (2022)
(https://medium.com/xord/nexus-mutual-a-decentralized-insurance-mutual-
6eff3665d9e1)

3. Angeris, G., Chitra, T.: Improved Price Oracles: Constant Function Market Makers. In:
ACM Advances in Financial Technologies, AFT ‘20 (2020)

4. Aquilina, M., Frost, J., Schrimpf, A.: Decentralized Finance (DeFi): A Functional
Approach. SSRN (2022)
(https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4325095)

5. Ankenbrand, T., et al.: Proposal for a Comprehensive (Crypto) Asset Taxonomy. In:
IEEE Blockchain Conference, 2020. (2020) (https://arxiv.org/pdf/2007.11877)

6. Weingärtner, C., Freni, T., Hülsemann, A., Tumasjan, A.: Tokenomics: Decentralized
Incentivization in the Context of Data Spaces. SpringerLink (2021)
(https://link.springer.com/chapter/10.1007/978-3-030-93975-5_6)

7. Toderean, L., Anghel, I., et al.: A Lockable ERC20 Token for Peer-to-Peer Energy
Trading. arXiv (2021) (https://arxiv.org/abs/2111.04467)

8. Schär, F.: Decentralized Finance: On Blockchain- and Smart Contract-based Financial
Markets. Federal Reserve Bank of St. Louis Review, 2021. (2021)
(https://doi.org/10.20955/r.103.153-74)

9. Campbell-Verduyn, M.: Bitcoin, Crypto-Coins, and the Future of Decentralized
Finance. Routledge (2021) (https://www.routledge.com/Bitcoin-Crypto-Coins-and-the-
Future-of-Decentralized-Finance/Campbell-Verduyn/p/book/9781138314428)

10. Buterin, V.: Ethereum Whitepaper: A Next Generation Smart Contract and
Decentralized Application Platform. Ethereum Foundation (2015)
(https://ethereum.org/en/whitepaper/)

https://uniswap.org/whitepaper.pdf
https://medium.com/xord/nexus-mutual-a-decentralized-insurance-mutual-6eff3665d9e1
https://medium.com/xord/nexus-mutual-a-decentralized-insurance-mutual-6eff3665d9e1
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4325095
https://arxiv.org/pdf/2007.11877
https://link.springer.com/chapter/10.1007/978-3-030-93975-5_6
https://arxiv.org/abs/2111.04467
https://doi.org/10.20955/r.103.153-74
https://www.routledge.com/Bitcoin-Crypto-Coins-and-the-Future-of-Decentralized-Finance/Campbell-Verduyn/p/book/9781138314428
https://www.routledge.com/Bitcoin-Crypto-Coins-and-the-Future-of-Decentralized-Finance/Campbell-Verduyn/p/book/9781138314428

